Modeling Insurance Fraud Detection Using Ensemble Combining Classification
نویسندگان
چکیده
This paper is a continuation of previous paper where the imbalance dataset problem was solved by applying a proposed novel partitioning-undersampling technique. Then a proposed innovative Insurance Fraud Detection (IFD) models were designed using base-classifiers; Decision Tree, Support Vector Machine and Artificial Neural Network. This paper proposed an innovative insurance fraud detection models by applying ensemble combining classifiers on IFD models designed previously using base-classifiers. Throughout the paper, ten-fold cross validation method of testing is used. Its originality lies in the use of several ensembles combining classifier and comparing between them for choosing the best model. Results from a publicly available automobile insurance fraud detection dataset demonstrate that DTIFD performs slightly better than all proposed models, ensemble combining classifier designed IFD models with high recall but still DTIFD model was the best. The proposed models were applied on another imbalance datasets and compared. Empirical results illustrate that the proposed models gave better results.
منابع مشابه
Ensemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملIdentification of Fraud in Banking Data and Financial Institutions Using Classification Algorithms
In recent years, due to the expansion of financial institutions,as well as the popularity of the World Wide Weband e-commerce, a significant increase in the volume offinancial transactions observed. In addition to the increasein turnover, a huge increase in the number of fraud by user’sabnormality is resulting in billions of dollars in lossesover the world. T...
متن کاملIdentification of Fraud in Banking Data and Financial Institutions Using Classification Algorithms
In recent years, due to the expansion of financial institutions,as well as the popularity of the World Wide Weband e-commerce, a significant increase in the volume offinancial transactions observed. In addition to the increasein turnover, a huge increase in the number of fraud by user’sabnormality is resulting in billions of dollars in lossesover the world. T...
متن کاملCombination of Ensemble Data Mining Methods for Detecting Credit Card Fraud Transactions
As we know, credit cards speed up and make life easier for all citizens and bank customers. They can use it anytime and anyplace according to their personal needs, instantly and quickly and without hassle, without worrying about carrying a lot of cash and more security than having liquidity. Together, these factors make credit cards one of the most popular forms of online banking. This has led ...
متن کاملPredictive Modeling in the Insurance Industry Using SAS Software
Insurance companies, third party insurance administrators, state insurance funds, state regulatory agencies, insurance industry consultants, and application service providers (ASP) use SAS software in a variety of predictive modeling situations. SAS Enterprise Miner provides tools for modeling continuous responses, such as monetary losses and time off work, and discrete responses, such as fraud...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016